

DPP No. 74

Total Marks : 24

Max. Time : 24 min.

Topics : Electromagnet Induction, Rotation, Center of Mass, Magnetic Effect of Current and Magnetic Force on Charge/current

8. The pitch of the helical path of the motion of the particle will be

(A)
$$\frac{\pi}{125}$$
 m (B) $\frac{\pi}{125}$ m (C) $\frac{\pi}{215}$ m

Get More Learning Materials Here : 📕

(D) $\frac{\pi}{250}$ m

Answers Key

1.	(A)	2.	(C)	3.	(D)	4.	(D)
5.	(C)	6.	(A)	7.	(B)	8.	(D)

<u>Hints & Solutions</u>

 When the key is at position (B) for a long time ; the energy stored in the inductor is :

$$U_{B} = \frac{1}{2}Li_{0}^{2} = \frac{1}{2}.L.\left(\frac{E}{R_{2}}\right)^{2} = \frac{L.E.^{2}}{2R_{2}^{2}}$$

This whole energy will be dissipated in the form of heat when the inductor is connected to R_1 and no source is connected.

Hence (A).

2. $P = Ae\sigma T^4$ 2 = 2 x 10⁻⁶ x0.9x 5.6 x 10⁻⁸ x T⁴

$$T^4 = \frac{10^{14}}{0.9 \times 5.6}$$

$$T = 2110 k$$

3.
$$f = \frac{1}{p} = \frac{1}{2}$$
 metre

f = 0.5 m this is positive so lense is convex lense.

Get More Learning Materials Here : 📕

R www.studentbro.in

Condition for pure rolling $V - \omega R = V'$ (i)

Momentum conservation m'V' = mV

From (i) and (ii)
$$V = \frac{'m\omega_1 V}{m'-m}$$

Torque of friction about point P is zero Angular momentum will remain conserved about this point

$$\frac{mR^2}{2}\omega = \frac{mR^2}{2}\omega_1 + mVR$$

Solving this we get $\omega' = \frac{m'-m}{3m'-m} \cdot \omega$

- 5. M_1 is very large as compared to M_2 . Hence for collision between M_1 and M_2 , M_1 can be considered equivalent to a wall and M_2 as a small block. Thus the velocity of M_2 will be $2v_0$ after collision with M_1 . Similarly after collision between M_2 and M_3 , the velocity of M_3 will be $2(2v_0)$. In sequence, the velocity of M_4 shall be $2(2(2v_0)) = 8 v_0$ after collision with M_3 .
- 6. The component of velocity of charged particle along the magnetic field does not change. The component of velocity of charged particle normal to magnetic field only changes in direction but always remains normal to magnetic field. Hence angle between velocity and magnetic field remains same.

7.
$$f = \frac{qB}{2\pi m} = \frac{10^3}{19} \times \frac{\sqrt{3800}}{2\pi}$$
$$= \frac{10^4}{\pi\sqrt{38}}$$

Get More Learning Materials Here : 📕

CLICK

8. Pitch = $T.V_{\parallel}$

$$= \frac{1}{f} \cdot \frac{\vec{V}.\vec{B}}{|\vec{B}|} = \frac{\pi\sqrt{38}.400}{10^4.\sqrt{3800}} = \frac{4\pi}{10^3} \,\mathrm{m}$$

$$=\frac{\pi}{250}$$
 m

Get More Learning Materials Here : 📕

